Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 10(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34362159

RESUMO

INTRODUCTION: Massive acute pulmonary embolism (MAPE) with obstructive cardiogenic shock is associated with a mortality rate of more than 50%. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) has been increasingly used in refractory cardiogenic shock with very good results. In MAPE, although it is currently recommended as part of initial resuscitation, it is not yet considered a stand-alone therapy. MATERIAL AND METHODS: All patients with MAPE requiring the establishment of VA-ECMO and admitted to our tertiary intensive care unit were analysed over a period of 10 years. The characteristics of these patients, before, during and after ECMO were extracted and analysed. RESULTS: A total of 36 patients were included in the present retrospective study. Overall survival was 64%. In the majority of cases, the haemodynamic and respiratory status of the patient improved significantly within the first 24 h on ECMO. The 30-day survival significantly increased when ECMO was used as stand-alone therapy (odds ratio (OR) 15.58, 95% confidence interval (CI) 2.65-91.57, p = 0.002). Nevertheless, when ECMO was implanted following the failure of thrombolysis, the bleeding complications were major (17 (100%) vs. 1 (5.3%) patients, p < 0.001) and the 30-day mortality increased significantly (OR 0.11, 95% CI 0.022-0.520, p = 0.006). CONCLUSIONS: The present retrospective study is certainly one of the most important in terms of the number of patients with MAPE and shock treated with VA-ECMO. This short-term mechanical circulatory support, used as a stand-alone therapy in MAPE, allows for the optimal stabilisation of patients.

2.
Ann Intensive Care ; 11(1): 43, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33709318

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbation and protective mechanical ventilation of acute respiratory distress syndrome (ARDS) patients induce hypercapnic respiratory acidosis. MAIN TEXT: Extracorporeal carbon dioxide removal (ECCO2R) aims to eliminate blood CO2 to fight against the adverse effects of hypercapnia and related acidosis. Hypercapnia has deleterious extrapulmonary consequences, particularly for the brain. In addition, in the lung, hypercapnia leads to: lower pH, pulmonary vasoconstriction, increases in right ventricular afterload, acute cor pulmonale. Moreover, hypercapnic acidosis may further damage the lungs by increasing both nitric oxide production and inflammation and altering alveolar epithelial cells. During an exacerbation of COPD, relieving the native lungs of at least a portion of the CO2 could potentially reduce the patient's respiratory work, Instead of mechanically increasing alveolar ventilation with MV in an already hyperinflated lung to increase CO2 removal, the use of ECCO2R may allow a decrease in respiratory volume and respiratory rate, resulting in improvement of lung mechanic. Thus, the use of ECCO2R may prevent noninvasive ventilation failure and allow intubated patients to be weaned off mechanical ventilation. In ARDS patients, ECCO2R may be used to promote an ultraprotective ventilation in allowing to lower tidal volume, plateau (Pplat) and driving pressures, parameters that have identified as a major risk factors for mortality. However, although ECCO2R appears to be effective in improving gas exchange and possibly in reducing the rate of endotracheal intubation and allowing more protective ventilation, its use may have pulmonary and hemodynamic consequences and may be associated with complications. CONCLUSION: In selected patients, ECCO2R may be a promising adjunctive therapeutic strategy for the management of patients with severe COPD exacerbation and for the establishment of protective or ultraprotective ventilation in patients with ARDS without prognosis-threatening hypoxemia.

3.
Physiol Rep ; 9(3): e14715, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33527751

RESUMO

INTRODUCTION: Current knowledge on the use of extracorporeal membrane oxygenation (ECMO) in COVID-19 remains limited to small series and registry data. In the present retrospective monocentric study, we report on our experience, our basic principles, and our results in establishing and managing ECMO in critically ill COVID-19 patients. METHODS: A cohort study was conducted in patients with severe acute respiratory distress syndrome (ARDS) related to COVID-19 pneumonia admitted to the ICU of the Geneva University Hospitals and supported by VV-ECMO from March 14 to May 31. The VV-ECMO implementation criteria were defined according to an institutional algorithm validated by the local crisis unit and the Swiss Society of Intensive Care Medicine. RESULTS: Out of 137 ARDS patients admitted to our ICU, 10 patients (age 57 ± 4 years, BMI 31.5 ± 5 kg/m2 , and SAPS II score 56 ± 3) were put on VV-ECMO. The mean duration of mechanical ventilation before ECMO and mean time under ECMO were 7 ± 3 days and 19 ± 11 days, respectively. The ICU and hospital length of stay were 26 ± 11 and 35 ± 10 days, respectively. The survival rate for patients on ECMO was 40%. The comparative analysis between survivors and non-survivors highlighted that survivors had a significantly shorter mechanical ventilation duration before ECMO (4 ± 2 days vs. 9 ± 2 days, p = 0.01). All the patients who had more than 150 h of mechanical ventilation before the application of ECMO ultimately died. CONCLUSION: The present results suggest that VV-ECMO can be safely utilized in appropriately selected COVID-19 patients with refractory hypoxemia. The main information for clinicians is that late VV-ECMO therapy (i.e., beyond the seventh day of mechanical ventilation) seems futile.


Assuntos
COVID-19/terapia , Oxigenação por Membrana Extracorpórea/métodos , COVID-19/patologia , Oxigenação por Membrana Extracorpórea/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Respiração Artificial/métodos , Análise de Sobrevida , Fatores de Tempo
4.
J Clin Med ; 10(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540537

RESUMO

Cardiac arrest (CA) is a frequent cause of death and a major public health issue. To date, conventional cardiopulmonary resuscitation (CPR) is the only efficient method of resuscitation available that positively impacts prognosis. Extracorporeal membrane oxygenation (ECMO) is a complex and costly technique that requires technical expertise. It is not considered standard of care in all hospitals and should be applied only in high-volume facilities. ECMO combined with CPR is known as ECPR (extracorporeal cardiopulmonary resuscitation) and permits hemodynamic and respiratory stabilization of patients with CA refractory to conventional CPR. This technique allows the parallel treatment of the underlying etiology of CA while maintaining organ perfusion. However, current evidence does not support the routine use of ECPR in all patients with refractory CA. Therefore, an appropriate selection of patients who may benefit from this procedure is key. Reducing the duration of low blood flow by means of performing high-quality CPR and promoting access to ECPR, may improve the survival rate of the patients presenting with refractory CA. Indeed, patients who benefit from ECPR seem to carry better neurological outcomes. The aim of this present narrative review is to present the most recent literature available on ECPR and to clarify its potential therapeutic role, as well as to provide an in-depth explanation of equipment and its set up, the patient selection process, and the patient management post-ECPR.

5.
Artif Organs ; 45(5): 479-487, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33184873

RESUMO

Extracorporeal carbon dioxide removal (ECCO2 R) is a low blood flow veno-venous extracorporeal membrane oxygenation technique that provides artificial blood CO2 removal. Recently, a new ECCO2 R system (PrismaLung), providing very low blood flow has been commercialized. The aim of this study is to report its use in severe chronic obstructive pulmonary disease (COPD) patients needing an ECCO2 R therapy. Six severe COPD patients with acute exacerbation leading to refractory hypercapnic respiratory acidosis were treated with ECCO2 R therapy. Two different systems were used: a PrismaLung system and a conventional ECCO2 R device. The maximum blood flow provided by PrismaLung was significantly lower than that with the conventional ECCO2 R system. In three patients initially treated with PrismaLung, there were no improvements in pH, PaCO2 , or RR. Thus, the therapy was switched to a conventional ECCO2 R system in these three patients, and three others were treated from the outset by the conventional ECCO2 R system, providing significant improvement in pH, PaCO2 , and RR. The present retrospective study describes the first use of PrismaLung in severe COPD patients with acute exacerbation. When compared with a higher blood flow ECCO2 R system, our results show that this novel, very low-flow device is not able to remove sufficient CO2 , normalize pH or decrease respiratory rate.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Hipercapnia/terapia , Doença Pulmonar Obstrutiva Crônica/terapia , Insuficiência Respiratória/terapia , Idoso , Circulação Sanguínea , Dióxido de Carbono/sangue , Dióxido de Carbono/isolamento & purificação , Oxigenação por Membrana Extracorpórea/instrumentação , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hipercapnia/sangue , Hipercapnia/etiologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/complicações , Insuficiência Respiratória/sangue , Insuficiência Respiratória/etiologia , Estudos Retrospectivos , Exacerbação dos Sintomas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...